ÉTUDE EXPLORATOIRE SUR L'UTILISATION D'UN DISPOSITIF D'AUSCULTATION CERVICALE POUR L'APPRENTISSAGE DE MANŒUVRES DE DÉGLUTITION EN BIOFEEDBACK

¹ Swallis Medical, France; ² Institut Universitaire de Réadaptation Clémenceau, France; ³ Centre Hospitalier Universitaire Grenoble Alpes, France

INTRODUCTION

- Le biofeedback de la déglutition est utilisé pour permettre un contrôle intentionnel de ce processus^[1]. Cette technique peut faciliter l'enseignement de manœuvres de déglutition^[2].
- Objectifs:
 - 1/Tester la compatibilité entre la réalisation de manœuvres de déglutition et le port d'un dispositif d'auscultation cervicale.
 - 2/Isoler les caractéristiques à la fois vibratoires et acoustiques spécifiques à quatre manœuvres les plus courantes en rééducation de la déglutition.

MATÉRIEL & MÉTHODE

- Sujets: 3 orthophonistes (12, 20) spécialisés dans la dysphagie.
- Scénario: 20 déglutitions avec manœuvre (5 par manœuvre testée) et 20 déglutitions sans manœuvre (baseline) par sujet, enregistrées avec le dispositif d'auscultation cervicale haute résolution Swallis DSA™ posé autour du cou du sujet (Fig. 1). Les déglutitions sans et avec manœuvre sont effectuées en alternance, et dans le même ordre.

Tableau 1 : Liste des manœuvres et des concience de réalisation

consignes de réalisation							
Manœuvre	Consigne						
MASAKO (MAS.)	Déglutir sa salive langue tirée bloquée entre les lèvres						
AVEC EFFORT (EFF.)	Déglutir fort 10mL d'eau						
AVEC CO- CONTRACTION (CO-C)	Déglutir 10mL d'eau avec appui des 2 mains sur les rebords de chaise						
MENDELSOHN (MEN.)	Déglutir 10mL d'eau en s'arrêtant, larynx haut, puis relâcher						

Des caractéristiques des signaux^[3] (liste in Tab. 2) sont extraites pour chaque déglutition isolée en un segment de 1sec (ex. Fig. 2).

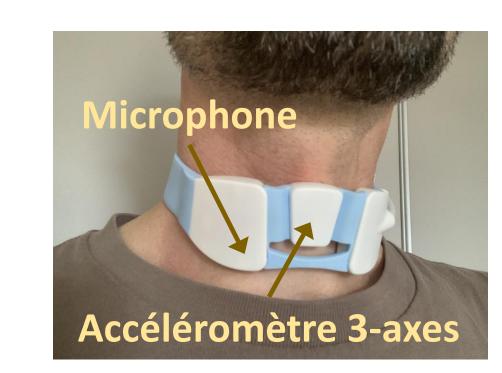


Figure 1 : Position du Collier Swallis DSA™

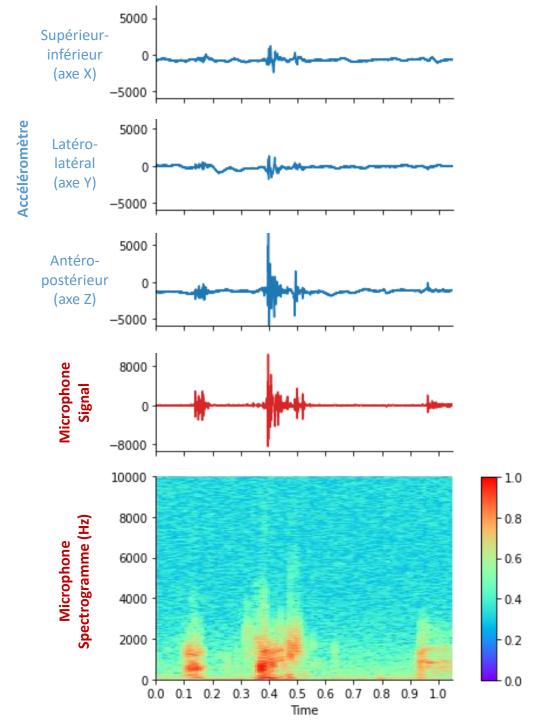


Figure 2 : Signature vibro-acoustique d'une déglutition

RÉSULTATS PRÉLIMINAIRES

- Le scénario a pu être mis en œuvre dans son intégralité et aucun participant n'a rapporté de difficulté pour réaliser chacune des manœuvres en présence du dispositif Swallis DSA™.
- Classification des segments de déglutitions :
 - Une caractéristique unique ne permet pas de discriminer une déglutition faite sans effort particulier (baseline) et avec n'importe quelle manœuvre (cf. Tab. 2). Un taux de bonne classification > à 76% [3] est atteint à partir d'une combinaison de ces caractéristiques (cf. Tab. 3).
 - Des caractéristiques différencieraient certaines manœuvres entre elles (cf. cases vertes du Tab. 2) sans toutefois pouvoir toutes les classer.

Tableau 2 : Distinction baseline vs manœuvre paramètre par paramètre. Case verte: variation du paramètre significativement différente ; case bleue: variation similaire mais non significative. A: accéléromètre, M: microphone.

		Caractéristique du signal	Signal	MAS.	EFF.	CO-C	MEN.	
			A (axe X)					
		Moyenne de l'énergie (_mean_energy)						
			A (3 axes)					
		Maximum de l'énergie (_max_energy)	A (axe Y)					
			A (axe Z)					
			A (3 axes)					
			M					
		Ratio temps d'énergie >5% de l'énergie max	A (axe Y)					
	rel	Maximum de la dérivée de l'énergie	A (axe Y)					
	Temporel		A (axe Z)					
	ещ		A (3 axes)					
	–		M					
		Déviation standard (_std)	A (axe X)					
			A (axe Y)					
			A (axe Z)					
			A (3 axes)					
		Kurtosis			Aucune variation significative			
		Skewness			Aucune variation significative			
tie		Entropy		Aucune variation significative				
Fréquentiel		Centroïde spectral	A (axe Z)					
équ		Centrolue spectral						
F		Bandwidth	Aucune variation significative					

Tableau 3 : Résultats de la classification baseline vs ensemble des manœuvres à partir de différentes méthodes d'apprentissage.

Classifieur		Précision	Rappel	% de bonne classification	
Arbre de décision	BASELINE	0,638	0,733	65,8%	
(k-validation en 10 partitions)	MANŒUVRE	0,686	0,583		
Arbre de décision	BASELINE	0,704	0,950	77,5%	
(full training set)	MANŒUVRE	0,923	0,600		
Réseau de neurone MLP	BASELINE	0,797	0,850	01 70/	
(k-validation en 10 partitions)	MANŒUVRE	0,839	0,783	81,7%	

CONCLUSION

- Le port du dispositif d'auscultation cervicale haute résolution Swallis DSA™ est compatible avec la réalisation de manœuvres de déglutition.
- Une combinaison de caractéristiques des signaux vibro-acoustiques des déglutitions permettraient de classer les déglutitions faites avec et sans manœuvre. Ces algorithmes représenteraient une façon d'estimer la réussite de l'apprentissage de manœuvres de déglutition.

A_max_energy < 39188645.04 Z_mean_energy < 248429.64 A_kurtosis < 1.73 : MANOEUVRE (6/0) | A_kurtosis >= 1.73 X_mean_energy < 85240.17

| Z_kurtosis >= 0.6 : BASELINE (65/13) X_mean_energy >= 85240.17 : MANOEUVRE (3/0) Z_mean_energy >= 248429.64

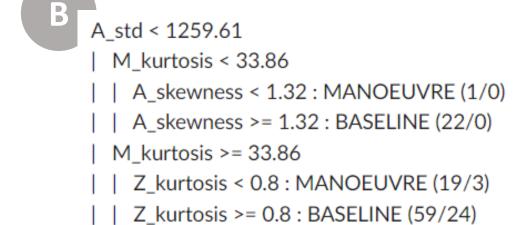
Z_kurtosis < 1.72 : MANOEUVRE (4/0) Z kurtosis >= 1.72

| X_bandwidth < 2189.28

| M_max_energy < 8779657.37 : BASELINE (2/0)

M_max_energy >= 8779657.37 : MANOEUVRE (4/1)

| X_bandwidth >= 2189.28 : MANOEUVRE (9/0)


| Z_mean_energy >= 219629.23 : MANOEUVRE (16/0)

A_max_energy >= 39188645.04 | Z_mean_energy < 219629.23 : BASELINE (1/0)

Size of the tree: 19

Max depth of tree: 5

Figures 3 : Arbres de décision pour la classification baseline vs ensemble des manœuvres. Fig. A : arbre de décision k-validation croisée (en 10 partitions). Fig. B : arbre de décision full training test

A_std >= 1259.61 : MANOEUVRE (19/0)

Size of the tree: 9 Max depth of tree: 3

RÉFÉRENCES

[1] D.-M. Denk et A. Kaider, « Videoendoscopic Biofeedback: A Simple Method to Improve the Efficacy of Swallowing Rehabilitation of Patients after Head and Neck Surgery », ORL, vol. 59, no 2, p. 100-105, 1997, doi: 10.1159/000276918. [2] G. H. McCullough, E. Kamarunas, G. C. Mann, J. W. Schmidley, J. A. Robbins, et M. A. Crary, « Effects of Mendelsohn Maneuver on Measures of Swallowing Duration Post Stroke », Topics in Stroke Rehabilitation, vol. 19, no 3, p. 234-243, mai 2012, doi: 10.1310/tsr1903-234.

[3] C. Donohue, Y. Khalifa, S. Perera, E. Sejdić, et J. L. Coyle, « Characterizing Effortful Swallows from Healthy Community Dwelling Adults Across the Lifespan Using High-Resolution Cervical Auscultation Signals and MBSImP Scores: A Preliminary Study », Dysphagia, sept. 2021, doi: 10.1007/s00455-021-10368-3.